skip to main content


Search for: All records

Creators/Authors contains: "Pyle, Steven D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. State-of-the-art machine learning models have achieved impressive feats of narrow intelligence, but have yet to realize the computational generality, adaptability, and power efficiency of biological brains. Thus, this work aims to improve current neural network models by leveraging the principle that the cortex consists of noisy and imprecise components in order to realize an ultra-low-power stochastic spiking neural circuit that resembles biological neuronal behavior. By utilizing probabilistic spintronics to provide true stochasticity in a compact CMOS-compatible device, an Adaptive Ring Oscillator for as-needed discrete sampling, and a homeostasis mechanism to reduce power consumption, provide additional biological characteristics, and improve process variation resilience, this subthreshold circuit is able to generate sub-nanosecond spiking behavior with biological characteristics at 200mV, using less than 80nW, along with behavioral robustness to process variation. 
    more » « less
  2. The spintronic stochastic spiking neuron (S3N) developed herein realizes biologically mimetic stochastic spiking characteristics observed within in vivo cortical neurons, while operating several orders of magnitude more rapidly and exhibiting a favorable energy profile. This work leverages a novel probabilistic spintronic switching element device that provides thermally-driven and current-controlled tunable stochasticity in a compact, low-energy, and high-speed package. Simulation program with integrated circuit emphasis (SPICE) simulation results indicate that the equivalent of 1 second of in vivo neuronal spiking characteristics can be generated on the order of nanoseconds, enabling the feasibility of extremely rapid emulation of in vivo neuronal behaviors for future statistical models of cortical information processing. Their results also indicate that the S3N can generate spikes on the order of ten picoseconds while dissipating only 0.6–9.6 μW, depending on the spiking rate. Additionally, they demonstrate that an S3N can implement perceptron functionality, such as AND-gate- and OR-gate-based logic processing, and provide future extensions of the work to more advanced stochastic neuromorphic architectures. 
    more » « less
  3. he architecture, operation, and characteristics of two post-CMOS reconfigurable fabrics are identified to realize energy-sparing and resilience features, while remaining feasible for near-term fabrication. First, Storage Cell Replacement Fabrics (SCRFs) provide a reconfigurable computing platform utilizing near-zero leakage Spin Hall Effect devices which replace SRAM bit-cells within Look-Up Tables (LUTs) and/or switch boxes to complement the advantages of MOS transistor-based multiplexer select trees. Second, Heterogeneous Technology Configurable Fabrics (HTCFs) are identified to extend reconfigurable computing platforms via a palette of CMOS, spin-based, or other emerging device technologies, such as various Magnetic Tunnel Junction (MTJ) and Domain Wall Motion devices. HTCFs are composed of a triad of Emerging Device Blocks, CMOS Logic Blocks, and Signal Conversion Blocks. This facilitates a novel architectural approach to reduce leakage energy, minimize communication occurrence and energy cost by eliminating unnecessary data transfer, and support auto-tuning for resilience. Furthermore, HTCFs enable new advantages of technology co-design which trades off alternative mappings between emerging devices and transistors at runtime by allowing dynamic remapping to adaptively leverage the intrinsic computing features of each device technology. SPICE simulations indicate 6% to 67% reduction in read energy, 21% reduction in reconfiguration energy, and 78% higher clock frequency versus alternative fabricated emerging device architectures, and a significant reduction in leakage compared to CMOS-based approaches. 
    more » « less